Remove Kafka Remove Raw Data Remove Structured Data
article thumbnail

How to Design a Modern, Robust Data Ingestion Architecture

Monte Carlo

Common Tools Data Sources Identification with Apache NiFi : Automates data flow, handling structured and unstructured data. Used for identifying and cataloging data sources. Data Storage with Apache HBase : Provides scalable, high-performance storage for structured and semi-structured data.

article thumbnail

Data Pipeline- Definition, Architecture, Examples, and Use Cases

ProjectPro

In broader terms, two types of data -- structured and unstructured data -- flow through a data pipeline. The structured data comprises data that can be saved and retrieved in a fixed format, like email addresses, locations, or phone numbers. However, it is not straightforward to create data pipelines.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Lake Explained: A Comprehensive Guide to Its Architecture and Use Cases

AltexSoft

The term was coined by James Dixon , Back-End Java, Data, and Business Intelligence Engineer, and it started a new era in how organizations could store, manage, and analyze their data. This article explains what a data lake is, its architecture, and diverse use cases. Data sources can be broadly classified into three categories.

article thumbnail

Top Data Lake Vendors (Quick Reference Guide)

Monte Carlo

By accommodating various data types, reducing preprocessing overhead, and offering scalability, data lakes have become an essential component of modern data platforms , particularly those serving streaming or machine learning use cases. AWS is one of the most popular data lake vendors.

article thumbnail

Difference between Pig and Hive-The Two Key Components of Hadoop Ecosystem

ProjectPro

Generally data to be stored in the database is categorized into 3 types namely Structured Data, Semi Structured Data and Unstructured Data. 2) Hive Hadoop Component is used for completely structured Data whereas Pig Hadoop Component is used for semi structured data.

Hadoop 52
article thumbnail

How to Become a Data Engineer in 2024?

Knowledge Hut

Businesses benefit at large with these data collection and analysis as they allow organizations to make predictions and give insights about products so that they can make informed decisions, backed by inferences from existing data, which, in turn, helps in huge profit returns to such businesses. What is the role of a Data Engineer?

article thumbnail

Data Vault on Snowflake: Feature Engineering and Business Vault

Snowflake

Collecting, cleaning, and organizing data into a coherent form for business users to consume are all standard data modeling and data engineering tasks for loading a data warehouse. Based on Tecton blog So is this similar to data engineering pipelines into a data lake/warehouse?