Remove Data Cleanse Remove Data Governance Remove Structured Data Remove Unstructured Data
article thumbnail

Veracity in Big Data: Why Accuracy Matters

Knowledge Hut

Variety: Variety represents the diverse range of data types and formats encountered in Big Data. Traditional data sources typically involve structured data, such as databases and spreadsheets. Handling this variety of data requires flexible data storage and processing methods.

article thumbnail

What is Data Extraction? Examples, Tools & Techniques

Knowledge Hut

Whether it's aggregating customer interactions, analyzing historical sales trends, or processing real-time sensor data, data extraction initiates the process. Data Source Typically starts with unprocessed or poorly structured data sources. Primary Focus Structuring and preparing data for further analysis.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Lake Explained: A Comprehensive Guide to Its Architecture and Use Cases

AltexSoft

Data sources can be broadly classified into three categories. Structured data sources. These are the most organized forms of data, often originating from relational databases and tables where the structure is clearly defined. Semi-structured data sources. Unstructured data sources.

article thumbnail

Top ETL Use Cases for BI and Analytics:Real-World Examples

ProjectPro

If you're wondering how the ETL process can drive your company to a new era of success, this blog will help you discover what use cases of ETL make it a critical component in many data management and analytic systems. Business Intelligence - ETL is a key component of BI systems for extracting and preparing data for analytics.

BI 52
article thumbnail

20+ Data Engineering Projects for Beginners with Source Code

ProjectPro

Thus, as a learner, your goal should be to work on projects that help you explore structured and unstructured data in different formats. Data Warehousing: Data warehousing utilizes and builds a warehouse for storing data. A data engineer interacts with this warehouse almost on an everyday basis.